

CHAI

CHAI is a C++ libary providing an array object that can be used transparently
in multiple memory spaces. Data is automatically migrated based on
copy-construction, allowing for correct data access regardless of location.
CHAI can be used standalone, but is best when paired with the RAJA library,
which has built-in CHAI integration that takes care of everything.

	If you want to get and install CHAI, take a look at our getting started
guide.

	If you are looking for documentation about a particular CHAI function, see
the code documentation.

	Want to contribute? Take a look at our developer and contribution guides.

Any questions? Contact chai-dev@llnl.gov

Basics

	Getting Started
	Installation

	Basic Usage

	Tutorial

	User Guide
	A Portable Pattern for Polymorphism

Reference

	Configuring CHAI

	Code Documentation

Contributing

	Contribution Guide
	Forking CHAI

	Developing a New Feature

	Developing a Bug Fix

	Creating a Pull Request

	Tests

	Developer Guide
	Continuous Integration

	Developer Guide

Getting Started

This page provides information on how to quickly get up and running with CHAI.

Installation

CHAI is hosted on GitHub here [https://github.com/LLNL/CHAI]. To clone the
repo into your local working space, type:

$ git clone --recursive git@github.com:LLNL/CHAI.git

The --recursive argument is required to ensure that the BLT submodule is
also checked out. BLT [https://github.com/LLNL/BLT] is the build system we
use for CHAI.

Building CHAI

CHAI uses CMake and BLT to handle builds. Make sure that you have a modern
compiler loaded and the configuration is as simple as:

$ mkdir build && cd build
$ cmake -DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda ../

By default, CHAI will attempt to build with CUDA. CMake will provide output
about which compiler is being used, and what version of CUDA was detected. Once
CMake has completed, CHAI can be built with Make:

$ make

For more advanced configuration, see Configuring CHAI.

Basic Usage

Let’s take a quick tour through CHAI’s most important features. A complete
listing you can compile is included at the bottom of the page. First, let’s
create a new ManagedArray object. This is the interface through which you will
want to access data:

chai::ManagedArray<double> a(100);

This creates a ManagedArray storing elements of type double, with 100 elements
allocated in the CPU memory.

Next, let’s assign some data to this array. We’ll use CHAI’s forall helper
function for this, since it interacts with the ArrayManager for us to ensure
the data is in the appropriate ExecutionSpace:

forall(sequential(), 0, 100, [=] (int i) {
 a[i] = 3.14 * i;
});

CHAI’s ArrayManager can copy this array to another ExecutionSpace
transparently. Let’s use the GPU to double the contents of this array:

forall(cuda(), 0, 100, [=] __device__ (int i) {
 a[i] = 2.0 * a[i];
});

We can access the array again on the CPU, and the ArrayManager will handle
copying the modified data back:

forall(sequential(), 0, 100, [=] (int i) {
 std::cout << "a[" << i << "] = " << a[i] << std::endl;
});

Tutorial

The file src/examples/example.cpp contains a brief program that shows how
CHAI can be used. Let’s walk through this example, line-by-line:

User Guide

A Portable Pattern for Polymorphism

CHAI provides a data structure to help handle cases where it is desirable to call virtual functions on the device. If you only call virtual functions on the host, this pattern is unnecessary. But for those who do want to use virtual functions on the device without a painstaking amount of refactoring, we begin with a short, albeit admittedly contrived example.

class MyBaseClass {
 public:
 MyBaseClass() {}
 virtual ~MyBaseClass() {}
 virtual int getValue() const = 0;
};

class MyDerivedClass : public MyBaseClass {
 public:
 MyDerivedClass(int value) : MyBaseClass(), m_value(value) {}
 ~MyDerivedClass() {}
 int getValue() const { return m_value; }

 private:
 int m_value;
};

int main(int argc, char** argv) {
 MyBaseClass* myBaseClass = new MyDerivedClass(0);
 myBaseClass->getValue();
 delete myBaseClass;
 return 0;
}

It is perfectly fine to call myBaseClass->getValue() in host code, since myBaseClass was created on the host. However, what if you want to call this virtual function on the device?

__global__ void callVirtualFunction(MyBaseClass* myBaseClass) {
 myBaseClass->getValue();
}

int main(int argc, char** argv) {
 MyBaseClass* myBaseClass = new MyDerivedClass(0);
 callVirtualFunction<<<1, 1>>>(myBaseClass);
 delete myBaseClass;
 return 0;
}

At best, calling this code will result in a crash. At worst, it will access garbage and happily continue while giving incorrect results. It is illegal to access host pointers on the device and produces undefined behavior. So what is our next attempt? Why not pass the argument by value rather than by a pointer?

__global__ void callVirtualFunction(MyBaseClass myBaseClass) {
 myBaseClass.getValue();
}

int main(int argc, char** argv) {
 MyBaseClass* myBaseClass = new MyDerivedClass(0);
 callVirtualFunction<<<1, 1>>>(*myBaseClass); // This will not compile
 delete myBaseClass;
 return 0;
}

At first glance, this may seem like it would work, but this is not supported by nvidia: “It is not allowed to pass as an argument to a __global__ function an object of a class with virtual functions” (https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#virtual-functions). Also: “It is not allowed to pass as an argument to a __global__ function an object of a class derived from virtual base classes” (https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#virtual-base-classes). You could refactor to use the curiously recurring template pattern, but that would likely require a large development effort and also limits the programming patterns you can use. Also, there is a limitation on the size of the arguments passed to a global kernel, so if you have a very large class this is simply impossible. So we make another attempt.

__global__ void callVirtualFunction(MyBaseClass* myBaseClass) {
 myBaseClass->getValue();
}

int main(int argc, char** argv) {
 MyBaseClass* myBaseClass = new MyDerivedClass(0);
 MyBaseClass* d_myBaseClass;
 cudaMalloc(&d_myBaseClass, sizeof(MyBaseClass));
 cudaMemcpy(d_myBaseClass, myBaseClass, sizeof(MyBaseClass), cudaMemcpyHostToDevice);

 callVirtualFunction<<<1, 1>>>(d_myBaseClass);

 cudaFree(d_myBaseClass);
 delete myBaseClass;

 return 0;
}

We are getting nearer, but there is still a flaw. The bits of myBaseClass contain the virtual function table that allows virtual function lookups on the host, but that virtual function table is not valid for lookups on the device since it contains pointers to host functions. It will not work any better to cast to MyDerivedClass and copy the bits. The only option is to call the constructor on the device and keep that device pointer around.

__global__ void make_on_device(MyBaseClass** myBaseClass, int argument) {
 *myBaseClass = new MyDerivedClass(argument);
}

__global__ void destroy_on_device(MyBaseClass* myBaseClass) {
 delete myBaseClass;
}

__global__ void callVirtualFunction(MyBaseClass* myBaseClass) {
 myBaseClass->getValue();
}

int main(int argc, char** argv) {
 MyBaseClass** d_temp;
 cudaMalloc(&d_temp, sizeof(MyBaseClass*));
 make_on_device<<<1, 1>>>(d_temp, 0);

 MyBaseClass** temp = (MyBaseClass**) malloc(sizeof(MyBaseClass*));
 cudaMemcpy(temp, d_temp, sizeof(MyBaseClass*), cudaMemcpyDeviceToHost);
 MyBaseClass d_myBaseClass = *temp;

 callVirtualFunction<<<1, 1>>>(d_myBaseClass);

 free(temp);
 destroy_on_device<<<1, 1>>>(d_myBaseClass);
 cudaFree(d_temp);

 return 0;
}

OK, this is finally correct, but super tedious. So we took care of all the boilerplate and underlying details for you. The final result is at least recognizable when compared to the original code. The added benefit is that you can use a chai::managed_ptr on the host AND the device.

__global__ void callVirtualFunction(chai::managed_ptr<MyBaseClass> myBaseClass) {
 myBaseClass->getValue();
}

int main(int argc, char** argv) {
 chai::managed_ptr<MyBaseClass> myBaseClass = chai::make_managed<MyDerivedClass>(0);
 myBaseClass->getValue(); // Accessible on the host
 callVirtualFunction<<<1, 1>>>(myBaseClass); // Accessible on the device
 myBaseClass.free();
 return 0;
}

OK, so we didn’t do all the work for you, but we definitely gave you a leg up. What’s left for you to do? You just need to make sure the functions accessed on the device have the __device__ specifier (including constructors and destructors). We use the CHAI_HOST_DEVICE macro in this example, which actually annotates the functions as __host__ __device__ so we can call the virtual method on both the host and the device. You also need to make sure the destructors of all base classes are virtual so the object gets cleaned up properly on the device.

class MyBaseClass {
 public:
 CARE_HOST_DEVICE MyBaseClass() {}
 CARE_HOST_DEVICE virtual ~MyBaseClass() {}
 CARE_HOST_DEVICE virtual int getValue() const = 0;
};

class MyDerivedClass : public MyBaseClass {
 public:
 CARE_HOST_DEVICE MyDerivedClass(int value) : MyBaseClass(), m_value(value) {}
 CARE_HOST_DEVICE ~MyDerivedClass() {}
 CARE_HOST_DEVICE int getValue() const { return m_value; }

 private:
 int m_value;
};

Now you may rightfully ask, what happens when this class contains raw pointers? There is a convenient solution for this case and we demonstrate with a more interesting example.

class MyBaseClass {
 public:
 CARE_HOST_DEVICE MyBaseClass() {}
 CARE_HOST_DEVICE virtual ~MyBaseClass() {}
 CARE_HOST_DEVICE virtual int getScalarValue() const = 0;
 CARE_HOST_DEVICE virtual int getArrayValue(int index) const = 0;
};

class MyDerivedClass : public MyBaseClass {
 public:
 CARE_HOST_DEVICE MyDerivedClass(int scalarValue, int* arrayValue)
 : MyBaseClass(), m_scalarValue(scalarValue), m_arrayValue(arrayValue) {}
 CARE_HOST_DEVICE ~MyDerivedClass() {}
 CARE_HOST_DEVICE int getScalarValue() const { return m_scalarValue; }
 CARE_HOST_DEVICE int getArrayValue() const { return m_arrayValue; }

 private:
 int m_scalarValue;
 int* m_arrayValue;
};

__global__ void callVirtualFunction(chai::managed_ptr<MyBaseClass> myBaseClass) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 myBaseClass->getScalarValue();
 myBaseClass->getArrayValue(i);
}

int main(int argc, char** argv) {
 chai::ManagedArray<int> arrayValue(10);
 chai::managed_ptr<MyBaseClass> myBaseClass
 = chai::make_managed<MyDerivedClass>(0, chai::unpack(arrayValue));
 callVirtualFunction<<<1, 10>>>(myBaseClass);
 myBaseClass.free();
 arrayValue.free();
 return 0;
}

The respective host and device pointers contained in the chai::ManagedArray can be extracted and passed to the host and device instance of MyDerivedClass using chai::unpack. Of course, if you never dereference m_arrayValue on the device, you could simply pass a raw pointer to chai::make_managed. If the class contains a chai::ManagedArray, a chai::ManagedArray can simply be passed to the constructor. The same rules apply for passing a chai::managed_ptr, calling chai::unpack on a chai::managed_ptr, or passing a raw pointer and not accessing it on the device.

More complicated rules apply for keeping the data in sync between the host and device instances of an object, but it is possible to do so to a limited extent. It is also possible to control the lifetimes of objects passed to chai::make_managed.

Configuring CHAI

In addition to the normal options provided by CMake, CHAI uses some additional
configuration arguments to control optional features and behavior. Each
argument is a boolean option, and can be turned on or off:

-DENABLE_CUDA=Off

Here is a summary of the configuration options, their default value, and meaning:

	Variable

	Default

	Meaning

	ENABLE_CUDA

	Off

	Enable CUDA support.

	ENABLE_HIP

	Off

	Enable HIP support.

	ENABLE_GPU_SIMULATION_MODE

	Off

	Simulates GPU execution.

	ENABLE_UM

	Off

	Enable support for CUDA Unified Memory.

	ENABLE_IMPLICIT_CONVERSIONS

	On

	Enable implicit conversions between ManagedArray and raw pointers

	DISABLE_RM

	Off

	Disable the ArrayManager and make ManagedArray a thin wrapper around a pointer.

	ENABLE_TESTS

	On

	Build test executables.

	ENABLE_BENCHMARKS

	On

	Build benchmark programs.

These arguments are explained in more detail below:

	ENABLE_CUDA
This option enables support for GPUs using CUDA. If CHAI is built without CUDA, HIP, or
GPU_SIMULATION_MODE support, then only the CPU execution space is available for use.

	ENABLE_HIP
This option enables support for GPUs using HIP. If CHAI is built without CUDA, HIP, or
GPU_SIMULATION_MODE support, then only the CPU execution space is available for use.

	ENABLE_GPU_SIMULATION_MODE
This option simulates GPU support by enabling the GPU execution space, backed by a HOST
umpire allocator. If CHAI is built without CUDA, HIP, or GPU_SIMULATION_MODE support,
then only the CPU execution space is available for use.

	ENABLE_UM
This option enables support for Unified Memory as an optional execution
space. When a ManagedArray is allocated in the UM space, CHAI will
not manually copy data. Data movement in this case is handled by the CUDA
driver and runtime.

	ENABLE_IMPLICIT_CONVERSIONS
This option will allow implicit casting between an object of type
ManagedArray<T> and the correpsonding raw pointer type T*. This
option is disabled by default, and should be used with caution.

	DISABLE_RM
This option will remove all usage of the ArrayManager class and let the
ManagedArray objects function as thin wrappers around a raw pointer. This
option can be used with CPU-only allocations, or with CUDA Unified Memory.

	ENABLE_TESTS
This option controls whether or not test executables will be built.

	ENABLE_BENCHMARKS
This option will build the benchmark programs used to test ManagedArray
performance.

Code Documentation

Contribution Guide

This document is intented for developers who want to add new features or
bugfixes to CHAI. It assumes you have some familiarity with git and GitHub. It
will discuss what a good pull request (PR) looks like, and the tests that your
PR must pass before it can be merged into CHAI.

Forking CHAI

If you aren’t a CHAI deveolper at LLNL, then you won’t have permission to push
new branches to the repository. First, you should create a fork [https://github.com/LLNL/CHAI#fork-destination-box]. This will create a copy
of the CHAI repository that you own, and will ensure you can push your changes
up to GitHub and create pull requests.

Developing a New Feature

New features should be based on the develop branch. When you want to create
a new feature, first ensure you have an up-to-date copy of the develop
branch:

$ git checkout develop
$ git pull origin develop

You can now create a new branch to develop your feature on:

$ git checkout -b feature/<name-of-feature>

Proceed to develop your feature on this branch, and add tests that will exercise
your new code. If you are creating new methods or classes, please add Doxygen
documentation.

Once your feature is complete and your tests are passing, you can push your
branch to GitHub and create a PR.

Developing a Bug Fix

First, check if the change you want to make has been fixed in develop. If
so, we suggest you either start using the develop branch, or temporarily
apply the fix to whichever version of CHAI you are using.

Assuming there is an unsolved bug, first make sure you have an up-to-date copy
of the develop branch:

$ git checkout develop
$ git pull origin develop

Then create a new branch for your bugfix:

$ git checkout -b bugfix/<name-of-bug>

First, add a test that reproduces the bug you have found. Then develop your
bugfix as normal, and ensure to make test to check your changes actually
fix the bug.

Once you are finished, you can push your branch to GitHub, then create a PR.

Creating a Pull Request

You can create a new PR here [https://github.com/LLNL/CHAI/compare]. GitHub
has a good guide [https://help.github.com/articles/about-pull-requests/] to
PR basics if you want some more information. Ensure that your PR base is the
develop branch of CHAI.

Add a descriptive title explaining the bug you fixed or the feature you have
added, and put a longer description of the changes you have made in the comment
box.

Once your PR has been created, it will be run through our automated tests and
also be reviewed by RAJA team members. Providing the branch passes both the
tests and reviews, it will be merged into RAJA.

Tests

CHAI’s tests are all in the test directory, and your PR must pass all these
tests before it is merged. If you are adding a new feature, add new tests.

Developer Guide

This section aims at gathering information useful to the developer.

In particular, the local build scenarios as well as CI testing will be discussed here.

	Continuous Integration

	Developer Guide

Continuous Integration

Gitlab CI

CHAI shares its Gitlab CI workflow with other projects. The documentation is
therefore `shared`_.

Developer Guide

CHAI shares its Uberenv workflow with other projects. The documentation is
therefore `shared`_.

This page will provides some CHAI specific examples to illustrate the
workflow described in the documentation.

Machine specific configuration

$ ls -c1 scripts/uberenv/spack_configs
blueos_3_ppc64le_ib
darwin
toss_3_x86_64_ib
blueos_3_ppc64le_ib_p9
config.yaml

CHAI has been configured for toss_3_x86_64_ib and other systems.

Vetted specs

$ ls -c1 .gitlab/*jobs.yml
.gitlab/lassen-jobs.yml
.gitlab/quartz-jobs.yml

CI contains jobs for quartz.

$ git grep -h "SPEC" .gitlab/quartz-jobs.yml | grep "gcc"
 SPEC: "%gcc@4.9.3"
 SPEC: "%gcc@6.1.0"
 SPEC: "%gcc@7.1.0"
 SPEC: "%gcc@7.3.0"
 SPEC: "%gcc@8.1.0"

We now have a list of the specs vetted on quartz/toss_3_x86_64_ib.

Note

In practice, one should check if the job is not allowed to fail, or even deactivated.

MacOS case

In CHAI, the Spack configuration for MacOS contains the default compilers depending on the OS version (compilers.yaml), and a commented section to illustrate how to add CMake as an external package. You may install CMake with homebrew, for example.

Using Uberenv to generate the host-config file

We have seen that we can safely use gcc@8.1.0 on quartz. Let us ask for the default configuration first, and then ask for RAJA support and link to develop version of RAJA:

$ python scripts/uberenv/uberenv.py --spec="%clang@9.0.0"
$ python scripts/uberenv/uberenv.py --spec="%clang@9.0.0+raja ^raja@develop"

Each will generate a CMake cache file, e.g.:

hc-quartz-toss_3_x86_64_ib-clang@9.0.0-fjcjwd6ec3uen5rh6msdqujydsj74ubf.cmake

Using host-config files to build CHAI

$ mkdir build && cd build
$ cmake -C <path_to>/<host-config>.cmake ..
$ cmake --build -j .
$ ctest --output-on-failure -T test

It is also possible to use this configuration with the CI script outside of CI:

$ HOST_CONFIG=<path_to>/<host-config>.cmake scripts/gitlab/build_and_test.sh

Testing new dependencies versions

CHAI depends on Umpire, and optionally CHAI. Testing with newer versions of both is made straightforward with Uberenv and Spack:

	$ python scripts/uberenv/uberenv.py --spec=%clang@9.0.0 ^umpire@develop

	$ python scripts/uberenv/uberenv.py --spec=%clang@9.0.0+raja ^raja@develop

Those commands will install respectively umpire@develop and raja@develop locally, and generate host-config files with the corresponding paths.

Again, the CI script can be used directly to install, build and test in one command:

$ SPEC="%clang@9.0.0 ^umpire@develop" scripts/gitlab/build_and_test.sh

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 CHAI

 		
 Getting Started

 		
 Installation

 		
 Building CHAI

 		
 Basic Usage

 		
 Tutorial

 		
 User Guide

 		
 A Portable Pattern for Polymorphism

 		
 Configuring CHAI

 		
 Code Documentation

 		
 Contribution Guide

 		
 Forking CHAI

 		
 Developing a New Feature

 		
 Developing a Bug Fix

 		
 Creating a Pull Request

 		
 Tests

 		
 Developer Guide

 		
 Continuous Integration

 		
 Gitlab CI

 		
 Developer Guide

 		
 Machine specific configuration

 		
 Vetted specs

 		
 MacOS case

_static/up-pressed.png

_static/up.png

