

CHAI

CHAI is a C++ libary providing an array object that can be used transparently
in multiple memory spaces. Data is automatically migrated based on
copy-construction, allowing for correct data access regardless of location.
CHAI can be used standalone, but is best when paired with the RAJA library,
which has built-in CHAI integration that takes care of everything.

	If you want to get and install CHAI, take a look at our getting started
guide.

	If you are looking for documentation about a particular CHAI function, see
the code documentation.

	Want to contribute? Take a look at our developer and contribution guides.

Any questions? Contact chai-dev@llnl.gov

Basics

	Getting Started
	Installation

	Basic Usage

	Tutorial

Reference

	Configuring CHAI

	Code Documentation

Contributing

	Contribution Guide
	Forking CHAI

	Developing a New Feature

	Developing a Bug Fix

	Creating a Pull Request

	Tests

	Developer Guide

Getting Started

This page provides information on how to quickly get up and running with CHAI.

Installation

CHAI is hosted on GitHub here [https://github.com/LLNL/CHAI]. To clone the
repo into your local working space, type:

$ git clone --recursive git@github.com:LLNL/CHAI.git

The --recursive argument is required to ensure that the BLT submodule is
also checked out. BLT [https://github.com/LLNL/BLT] is the build system we
use for CHAI.

Building CHAI

CHAI uses CMake and BLT to handle builds. Make sure that you have a modern
compiler loaded and the configuration is as simple as:

$ mkdir build && cd build
$ cmake -DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda ../

By default, CHAI will attempt to build with CUDA. CMake will provide output
about which compiler is being used, and what version of CUDA was detected. Once
CMake has completed, CHAI can be built with Make:

$ make

For more advanced configuration, see Configuring CHAI.

Basic Usage

Let’s take a quick tour through CHAI’s most important features. A complete
listing you can compile is included at the bottom of the page. First, let’s
create a new ManagedArray object. This is the interface through which you will
want to access data:

chai::ManagedArray<double> a(100);

This creates a ManagedArray storing elements of type double, with 100 elements
allocated in the CPU memory.

Next, let’s assign some data to this array. We’ll use CHAI’s forall helper
function for this, since it interacts with the ArrayManager for us to ensure
the data is in the appropriate ExecutionSpace:

forall(sequential(), 0, 100, [=] (int i) {
 a[i] = 3.14 * i;
});

CHAI’s ArrayManager can copy this array to another ExecutionSpace
transparently. Let’s use the GPU to double the contents of this array:

forall(cuda(), 0, 100, [=] __device__ (int i) {
 a[i] = 2.0 * a[i];
});

We can access the array again on the CPU, and the ArrayManager will handle
copying the modified data back:

forall(sequential(), 0, 100, [=] (int i) {
 std::cout << "a[" << i << "] = " << a[i] << std::endl;
});

Tutorial

The file src/examples/example.cpp contains a brief program that shows how
CHAI can be used. Let’s walk through this example, line-by-line:

Configuring CHAI

In addition to the normal options provided by CMake, CHAI uses some additional
configuration arguments to control optional features and behavior. Each
argument is a boolean option, and can be turned on or off:

-DENABLE_CUDA=Off

Here is a summary of the configuration options, their default value, and meaning:

	Variable

	Default

	Meaning

	ENABLE_CUDA

	On

	Enable CUDA support

	ENABLE_UM

	Off

	Enable support for CUDA Unified Memory.

	ENABLE_CNEM

	Off

	Enable cnmem for GPU allocations

	ENABLE_IMPLICIT_CONVERSIONS

	On

	Enable implicit conversions between ManagedArray and raw pointers

	DISABLE_RM

	Off

	Disable the ArrayManager and make ManagedArray a thin wrapper around a pointer.

	ENABLE_TESTING

	On

	Build test executables

	ENABLE_BENCHMARKS

	On

	Build benchmark programs

These arguments are explained in more detail below:

	ENABLE_CUDA
This option enables support for GPUs. If CHAI is built without CUDA support,
then only the CPU execution space is available for use.

	ENABLE_UM
This option enables support for Unified Memory as an optional execution
space. When a ManagedArray is allocated in the UM space, CHAI will
not manually copy data. Data movement in this case is handled by the CUDA
driver and runtime.

	ENABLE_CNEM
This option enables the use of the cnmem library for GPU allocations. The
cnmem library provides a pool mechanism to reduce the overhead of allocating
memory on the GPU.

When ENABLE_CNMEM is set to On, you must tell CMake where to find
the cnmem library. This can be done by setting the cnem_DIR variable, for
example:

	ENABLE_IMPLICIT_CONVERSIONS
This option will allow implicit casting between an object of type
ManagedArray<T> and the correpsonding raw pointer type T*. This
option is disabled by default, and should be used with caution.

	DISABLE_RM
This option will remove all usage of the ArrayManager class and let the
ManagedArray objects function as thin wrappers around a raw pointer. This
option can be used with CPU-only allocations, or with CUDA Unified Memory.

	ENABLE_TESTING
This option controls whether or not test executables will be built.

	ENABLE_BENCHMARKS
This option will build the benchmark programs used to test ManagedArray
performance.

Code Documentation

Contribution Guide

This document is intented for developers who want to add new features or
bugfixes to CHAI. It assumes you have some familiarity with git and GitHub. It
will discuss what a good pull request (PR) looks like, and the tests that your
PR must pass before it can be merged into CHAI.

Forking CHAI

If you aren’t a CHAI deveolper at LLNL, then you won’t have permission to push
new branches to the repository. First, you should create a fork [https://github.com/LLNL/CHAI#fork-destination-box]. This will create a copy
of the CHAI repository that you own, and will ensure you can push your changes
up to GitHub and create pull requests.

Developing a New Feature

New features should be based on the develop branch. When you want to create
a new feature, first ensure you have an up-to-date copy of the develop
branch:

$ git checkout develop
$ git pull origin develop

You can now create a new branch to develop your feature on:

$ git checkout -b feature/<name-of-feature>

Proceed to develop your feature on this branch, and add tests that will exercise
your new code. If you are creating new methods or classes, please add Doxygen
documentation.

Once your feature is complete and your tests are passing, you can push your
branch to GitHub and create a PR.

Developing a Bug Fix

First, check if the change you want to make has been fixed in develop. If
so, we suggest you either start using the develop branch, or temporarily
apply the fix to whichever version of CHAI you are using.

Assuming there is an unsolved bug, first make sure you have an up-to-date copy
of the develop branch:

$ git checkout develop
$ git pull origin develop

Then create a new branch for your bugfix:

$ git checkout -b bugfix/<name-of-bug>

First, add a test that reproduces the bug you have found. Then develop your
bugfix as normal, and ensure to make test to check your changes actually
fix the bug.

Once you are finished, you can push your branch to GitHub, then create a PR.

Creating a Pull Request

You can create a new PR here [https://github.com/LLNL/CHAI/compare]. GitHub
has a good guide [https://help.github.com/articles/about-pull-requests/] to
PR basics if you want some more information. Ensure that your PR base is the
develop branch of CHAI.

Add a descriptive title explaining the bug you fixed or the feature you have
added, and put a longer description of the changes you have made in the comment
box.

Once your PR has been created, it will be run through our automated tests and
also be reviewed by RAJA team members. Providing the branch passes both the
tests and reviews, it will be merged into RAJA.

Tests

CHAI’s tests are all in the test directory, and your PR must pass all these
tests before it is merged. If you are adding a new feature, add new tests.

Developer Guide

Coming soon!

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 CHAI

 		
 Getting Started

 		
 Installation

 		
 Building CHAI

 		
 Basic Usage

 		
 Tutorial

 		
 Configuring CHAI

 		
 Code Documentation

 		
 Contribution Guide

 		
 Forking CHAI

 		
 Developing a New Feature

 		
 Developing a Bug Fix

 		
 Creating a Pull Request

 		
 Tests

 		
 Developer Guide

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

