
CHAI Documentation
Release 1.1.0

CHAI Developers

Jan 16, 2019

Basics

1 Getting Started 3
1.1 Installation . 3
1.2 Basic Usage . 4

2 Tutorial 5

3 Configuring CHAI 7

4 Code Documentation 9

5 Contribution Guide 11
5.1 Forking CHAI . 11
5.2 Developing a New Feature . 11
5.3 Developing a Bug Fix . 12
5.4 Creating a Pull Request . 12
5.5 Tests . 12

6 Developer Guide 13

i

ii

CHAI Documentation, Release 1.1.0

CHAI is a C++ libary providing an array object that can be used transparently in multiple memory spaces. Data is
automatically migrated based on copy-construction, allowing for correct data access regardless of location. CHAI can
be used standalone, but is best when paired with the RAJA library, which has built-in CHAI integration that takes care
of everything.

• If you want to get and install CHAI, take a look at our getting started guide.

• If you are looking for documentation about a particular CHAI function, see the code documentation.

• Want to contribute? Take a look at our developer and contribution guides.

Any questions? Contact chai-dev@llnl.gov

Basics 1

mailto:chai-dev@llnl.gov

CHAI Documentation, Release 1.1.0

2 Basics

CHAPTER 1

Getting Started

This page provides information on how to quickly get up and running with CHAI.

1.1 Installation

CHAI is hosted on GitHub here. To clone the repo into your local working space, type:

$ git clone --recursive git@github.com:LLNL/CHAI.git

The --recursive argument is required to ensure that the BLT submodule is also checked out. BLT is the build
system we use for CHAI.

1.1.1 Building CHAI

CHAI uses CMake and BLT to handle builds. Make sure that you have a modern compiler loaded and the configuration
is as simple as:

$ mkdir build && cd build
$ cmake -DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda ../

By default, CHAI will attempt to build with CUDA. CMake will provide output about which compiler is being used,
and what version of CUDA was detected. Once CMake has completed, CHAI can be built with Make:

$ make

For more advanced configuration, see Configuring CHAI.

3

https://github.com/LLNL/CHAI
https://github.com/LLNL/BLT

CHAI Documentation, Release 1.1.0

1.2 Basic Usage

Let’s take a quick tour through CHAI’s most important features. A complete listing you can compile is included at the
bottom of the page. First, let’s create a new ManagedArray object. This is the interface through which you will want
to access data:

chai::ManagedArray<double> a(100);

This creates a ManagedArray storing elements of type double, with 100 elements allocated in the CPU memory.

Next, let’s assign some data to this array. We’ll use CHAI’s forall helper function for this, since it interacts with the
ArrayManager for us to ensure the data is in the appropriate ExecutionSpace:

forall(sequential(), 0, 100, [=] (int i) {
a[i] = 3.14 * i;

});

CHAI’s ArrayManager can copy this array to another ExecutionSpace transparently. Let’s use the GPU to double the
contents of this array:

forall(cuda(), 0, 100, [=] __device__ (int i) {
a[i] = 2.0 * a[i];

});

We can access the array again on the CPU, and the ArrayManager will handle copying the modified data back:

forall(sequential(), 0, 100, [=] (int i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

});

4 Chapter 1. Getting Started

CHAPTER 2

Tutorial

The file src/examples/example.cpp contains a brief program that shows how CHAI can be used. Let’s walk
through this example, line-by-line:

5

CHAI Documentation, Release 1.1.0

6 Chapter 2. Tutorial

CHAPTER 3

Configuring CHAI

In addition to the normal options provided by CMake, CHAI uses some additional configuration arguments to control
optional features and behavior. Each argument is a boolean option, and can be turned on or off:

-DENABLE_CUDA=Off

Here is a summary of the configuration options, their default value, and meaning:

Variable De-
fault

Meaning

ENABLE_CUDA On Enable CUDA support
ENABLE_UM Off Enable support for CUDA Unified Memory.
ENABLE_CNEM Off Enable cnmem for GPU allocations
EN-
ABLE_IMPLICIT_CONVERSIONS

On Enable implicit conversions between ManagedArray and raw
pointers

DISABLE_RM Off Disable the ArrayManager and make ManagedArray a thin
wrapper around a pointer.

ENABLE_TESTING On Build test executables
ENABLE_BENCHMARKS On Build benchmark programs

These arguments are explained in more detail below:

• ENABLE_CUDA This option enables support for GPUs. If CHAI is built without CUDA support, then only the
CPU execution space is available for use.

• ENABLE_UM This option enables support for Unified Memory as an optional execution space. When a
ManagedArray is allocated in the UM space, CHAI will not manually copy data. Data movement in this
case is handled by the CUDA driver and runtime.

• ENABLE_CNEM This option enables the use of the cnmem library for GPU allocations. The cnmem library
provides a pool mechanism to reduce the overhead of allocating memory on the GPU.

When ENABLE_CNMEM is set to On, you must tell CMake where to find the cnmem library. This can be done
by setting the cnem_DIR variable, for example:

7

CHAI Documentation, Release 1.1.0

• ENABLE_IMPLICIT_CONVERSIONS This option will allow implicit casting between an object of type
ManagedArray<T> and the correpsonding raw pointer type T*. This option is disabled by default, and
should be used with caution.

• DISABLE_RM This option will remove all usage of the ArrayManager class and let the ManagedArray
objects function as thin wrappers around a raw pointer. This option can be used with CPU-only allocations, or
with CUDA Unified Memory.

• ENABLE_TESTING This option controls whether or not test executables will be built.

• ENABLE_BENCHMARKS This option will build the benchmark programs used to test ManagedArray per-
formance.

8 Chapter 3. Configuring CHAI

CHAPTER 4

Code Documentation

9

CHAI Documentation, Release 1.1.0

10 Chapter 4. Code Documentation

CHAPTER 5

Contribution Guide

This document is intented for developers who want to add new features or bugfixes to CHAI. It assumes you have
some familiarity with git and GitHub. It will discuss what a good pull request (PR) looks like, and the tests that your
PR must pass before it can be merged into CHAI.

5.1 Forking CHAI

If you aren’t a CHAI deveolper at LLNL, then you won’t have permission to push new branches to the repository.
First, you should create a fork. This will create a copy of the CHAI repository that you own, and will ensure you can
push your changes up to GitHub and create pull requests.

5.2 Developing a New Feature

New features should be based on the develop branch. When you want to create a new feature, first ensure you have
an up-to-date copy of the develop branch:

$ git checkout develop
$ git pull origin develop

You can now create a new branch to develop your feature on:

$ git checkout -b feature/<name-of-feature>

Proceed to develop your feature on this branch, and add tests that will exercise your new code. If you are creating new
methods or classes, please add Doxygen documentation.

Once your feature is complete and your tests are passing, you can push your branch to GitHub and create a PR.

11

https://github.com/LLNL/CHAI#fork-destination-box

CHAI Documentation, Release 1.1.0

5.3 Developing a Bug Fix

First, check if the change you want to make has been fixed in develop. If so, we suggest you either start using the
develop branch, or temporarily apply the fix to whichever version of CHAI you are using.

Assuming there is an unsolved bug, first make sure you have an up-to-date copy of the develop branch:

$ git checkout develop
$ git pull origin develop

Then create a new branch for your bugfix:

$ git checkout -b bugfix/<name-of-bug>

First, add a test that reproduces the bug you have found. Then develop your bugfix as normal, and ensure to make
test to check your changes actually fix the bug.

Once you are finished, you can push your branch to GitHub, then create a PR.

5.4 Creating a Pull Request

You can create a new PR here. GitHub has a good guide to PR basics if you want some more information. Ensure that
your PR base is the develop branch of CHAI.

Add a descriptive title explaining the bug you fixed or the feature you have added, and put a longer description of the
changes you have made in the comment box.

Once your PR has been created, it will be run through our automated tests and also be reviewed by RAJA team
members. Providing the branch passes both the tests and reviews, it will be merged into RAJA.

5.5 Tests

CHAI’s tests are all in the test directory, and your PR must pass all these tests before it is merged. If you are adding
a new feature, add new tests.

12 Chapter 5. Contribution Guide

https://github.com/LLNL/CHAI/compare
https://help.github.com/articles/about-pull-requests/

CHAPTER 6

Developer Guide

Coming soon!

13

	Getting Started
	Installation
	Basic Usage

	Tutorial
	Configuring CHAI
	Code Documentation
	Contribution Guide
	Forking CHAI
	Developing a New Feature
	Developing a Bug Fix
	Creating a Pull Request
	Tests

	Developer Guide

