
CHAI Documentation
Release 2023.06.0

CHAI Developers

Jul 25, 2023

Basics

1 Getting Started 3
1.1 Installation . 3
1.2 Basic Usage . 4

2 Tutorial 5

3 User Guide 7
3.1 A Portable Pattern for Polymorphism . 7

4 Configuring CHAI 13

5 Code Documentation 15

6 Contribution Guide 17
6.1 Forking CHAI . 17
6.2 Developing a New Feature . 17
6.3 Developing a Bug Fix . 18
6.4 Creating a Pull Request . 18
6.5 Tests . 18

7 Developer Guide 19
7.1 Continuous Integration . 19
7.2 Developer Guide . 19

i

ii

CHAI Documentation, Release 2023.06.0

CHAI is a C++ libary providing an array object that can be used transparently in multiple memory spaces. Data is
automatically migrated based on copy-construction, allowing for correct data access regardless of location. CHAI can
be used standalone, but is best when paired with the RAJA library, which has built-in CHAI integration that takes care
of everything.

• If you want to get and install CHAI, take a look at our getting started guide.

• If you are looking for documentation about a particular CHAI function, see the code documentation.

• Want to contribute? Take a look at our developer and contribution guides.

Any questions? Contact chai-dev@llnl.gov

Basics 1

mailto:chai-dev@llnl.gov

CHAI Documentation, Release 2023.06.0

2 Basics

CHAPTER 1

Getting Started

This page provides information on how to quickly get up and running with CHAI.

1.1 Installation

CHAI is hosted on GitHub here. To clone the repo into your local working space, type:

$ git clone --recursive git@github.com:LLNL/CHAI.git

The --recursive argument is required to ensure that the BLT submodule is also checked out. BLT is the build
system we use for CHAI.

1.1.1 Building CHAI

CHAI uses CMake and BLT to handle builds. Make sure that you have a modern compiler loaded and the configuration
is as simple as:

$ mkdir build && cd build
$ cmake -DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda ../

By default, CHAI will attempt to build with CUDA. CMake will provide output about which compiler is being used,
and what version of CUDA was detected. Once CMake has completed, CHAI can be built with Make:

$ make

For more advanced configuration, see Configuring CHAI.

3

https://github.com/LLNL/CHAI
https://github.com/LLNL/BLT

CHAI Documentation, Release 2023.06.0

1.2 Basic Usage

Let’s take a quick tour through CHAI’s most important features. A complete listing you can compile is included at the
bottom of the page. First, let’s create a new ManagedArray object. This is the interface through which you will want
to access data:

chai::ManagedArray<double> a(100);

This creates a ManagedArray storing elements of type double, with 100 elements allocated in the CPU memory.

Next, let’s assign some data to this array. We’ll use CHAI’s forall helper function for this, since it interacts with the
ArrayManager for us to ensure the data is in the appropriate ExecutionSpace:

forall(sequential(), 0, 100, [=] (int i) {
a[i] = 3.14 * i;

});

CHAI’s ArrayManager can copy this array to another ExecutionSpace transparently. Let’s use the GPU to double the
contents of this array:

forall(cuda(), 0, 100, [=] __device__ (int i) {
a[i] = 2.0 * a[i];

});

We can access the array again on the CPU, and the ArrayManager will handle copying the modified data back:

forall(sequential(), 0, 100, [=] (int i) {
std::cout << "a[" << i << "] = " << a[i] << std::endl;

});

4 Chapter 1. Getting Started

CHAPTER 2

Tutorial

The file src/examples/example.cpp contains a brief program that shows how CHAI can be used. Let’s walk
through this example, line-by-line:

5

CHAI Documentation, Release 2023.06.0

6 Chapter 2. Tutorial

CHAPTER 3

User Guide

3.1 A Portable Pattern for Polymorphism

CHAI provides a data structure to help handle cases where it is desirable to call virtual functions on the device. If you
only call virtual functions on the host, this pattern is unnecessary. But for those who do want to use virtual functions
on the device without a painstaking amount of refactoring, we begin with a short, albeit admittedly contrived example.

class MyBaseClass {
public:

MyBaseClass() {}
virtual ~MyBaseClass() {}
virtual int getValue() const = 0;

};

class MyDerivedClass : public MyBaseClass {
public:

MyDerivedClass(int value) : MyBaseClass(), m_value(value) {}
~MyDerivedClass() {}
int getValue() const { return m_value; }

private:
int m_value;

};

int main(int argc, char** argv) {
MyBaseClass* myBaseClass = new MyDerivedClass(0);
myBaseClass->getValue();
delete myBaseClass;
return 0;

}

It is perfectly fine to call myBaseClass->getValue() in host code, since myBaseClass was created on the host. However,
what if you want to call this virtual function on the device?

7

CHAI Documentation, Release 2023.06.0

__global__ void callVirtualFunction(MyBaseClass* myBaseClass) {
myBaseClass->getValue();

}

int main(int argc, char** argv) {
MyBaseClass* myBaseClass = new MyDerivedClass(0);
callVirtualFunction<<<1, 1>>>(myBaseClass);
delete myBaseClass;
return 0;

}

At best, calling this code will result in a crash. At worst, it will access garbage and happily continue while giving
incorrect results. It is illegal to access host pointers on the device and produces undefined behavior. So what is our
next attempt? Why not pass the argument by value rather than by a pointer?

__global__ void callVirtualFunction(MyBaseClass myBaseClass) {
myBaseClass.getValue();

}

int main(int argc, char** argv) {
MyBaseClass* myBaseClass = new MyDerivedClass(0);
callVirtualFunction<<<1, 1>>>(*myBaseClass); // This will not compile
delete myBaseClass;
return 0;

}

At first glance, this may seem like it would work, but this is not supported by nvidia: “It is not allowed to
pass as an argument to a __global__ function an object of a class with virtual functions” (https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html#virtual-functions). Also: “It is not allowed to pass as an argu-
ment to a __global__ function an object of a class derived from virtual base classes” (https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#virtual-base-classes). You could refactor to use the curiously recurring tem-
plate pattern, but that would likely require a large development effort and also limits the programming patterns you
can use. Also, there is a limitation on the size of the arguments passed to a global kernel, so if you have a very large
class this is simply impossible. So we make another attempt.

__global__ void callVirtualFunction(MyBaseClass* myBaseClass) {
myBaseClass->getValue();

}

int main(int argc, char** argv) {
MyBaseClass* myBaseClass = new MyDerivedClass(0);
MyBaseClass* d_myBaseClass;
cudaMalloc(&d_myBaseClass, sizeof(MyBaseClass));
cudaMemcpy(d_myBaseClass, myBaseClass, sizeof(MyBaseClass),

→˓cudaMemcpyHostToDevice);

callVirtualFunction<<<1, 1>>>(d_myBaseClass);

cudaFree(d_myBaseClass);
delete myBaseClass;

return 0;
}

We are getting nearer, but there is still a flaw. The bits of myBaseClass contain the virtual function table that allows
virtual function lookups on the host, but that virtual function table is not valid for lookups on the device since it
contains pointers to host functions. It will not work any better to cast to MyDerivedClass and copy the bits. The only

8 Chapter 3. User Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#virtual-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#virtual-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#virtual-base-classes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#virtual-base-classes

CHAI Documentation, Release 2023.06.0

option is to call the constructor on the device and keep that device pointer around.

__global__ void make_on_device(MyBaseClass** myBaseClass, int argument) {

*myBaseClass = new MyDerivedClass(argument);
}

__global__ void destroy_on_device(MyBaseClass* myBaseClass) {
delete myBaseClass;

}

__global__ void callVirtualFunction(MyBaseClass* myBaseClass) {
myBaseClass->getValue();

}

int main(int argc, char** argv) {
MyBaseClass** d_temp;
cudaMalloc(&d_temp, sizeof(MyBaseClass*));
make_on_device<<<1, 1>>>(d_temp, 0);

MyBaseClass** temp = (MyBaseClass**) malloc(sizeof(MyBaseClass*));
cudaMemcpy(temp, d_temp, sizeof(MyBaseClass*), cudaMemcpyDeviceToHost);
MyBaseClass d_myBaseClass = *temp;

callVirtualFunction<<<1, 1>>>(d_myBaseClass);

free(temp);
destroy_on_device<<<1, 1>>>(d_myBaseClass);
cudaFree(d_temp);

return 0;
}

OK, this is finally correct, but super tedious. So we took care of all the boilerplate and underlying details for you.
The final result is at least recognizable when compared to the original code. The added benefit is that you can use a
chai::managed_ptr on the host AND the device.

__global__ void callVirtualFunction(chai::managed_ptr<MyBaseClass> myBaseClass) {
myBaseClass->getValue();

}

int main(int argc, char** argv) {
chai::managed_ptr<MyBaseClass> myBaseClass = chai::make_managed<MyDerivedClass>(0);
myBaseClass->getValue(); // Accessible on the host
callVirtualFunction<<<1, 1>>>(myBaseClass); // Accessible on the device
myBaseClass.free();
return 0;

}

OK, so we didn’t do all the work for you, but we definitely gave you a leg up. What’s left for you to do? You just
need to make sure the functions accessed on the device have the __device__ specifier (including constructors and
destructors). We use the CHAI_HOST_DEVICE macro in this example, which actually annotates the functions as
__host__ __device__ so we can call the virtual method on both the host and the device. You also need to make sure
the destructors of all base classes are virtual so the object gets cleaned up properly on the device.

class MyBaseClass {
public:

CARE_HOST_DEVICE MyBaseClass() {}

(continues on next page)

3.1. A Portable Pattern for Polymorphism 9

CHAI Documentation, Release 2023.06.0

(continued from previous page)

CARE_HOST_DEVICE virtual ~MyBaseClass() {}
CARE_HOST_DEVICE virtual int getValue() const = 0;

};

class MyDerivedClass : public MyBaseClass {
public:

CARE_HOST_DEVICE MyDerivedClass(int value) : MyBaseClass(), m_value(value) {}
CARE_HOST_DEVICE ~MyDerivedClass() {}
CARE_HOST_DEVICE int getValue() const { return m_value; }

private:
int m_value;

};

Now you may rightfully ask, what happens when this class contains raw pointers? There is a convenient solution for
this case and we demonstrate with a more interesting example.

class MyBaseClass {
public:

CARE_HOST_DEVICE MyBaseClass() {}
CARE_HOST_DEVICE virtual ~MyBaseClass() {}
CARE_HOST_DEVICE virtual int getScalarValue() const = 0;
CARE_HOST_DEVICE virtual int getArrayValue(int index) const = 0;

};

class MyDerivedClass : public MyBaseClass {
public:

CARE_HOST_DEVICE MyDerivedClass(int scalarValue, int* arrayValue)
: MyBaseClass(), m_scalarValue(scalarValue), m_arrayValue(arrayValue) {}

CARE_HOST_DEVICE ~MyDerivedClass() {}
CARE_HOST_DEVICE int getScalarValue() const { return m_scalarValue; }
CARE_HOST_DEVICE int getArrayValue() const { return m_arrayValue; }

private:
int m_scalarValue;
int* m_arrayValue;

};

__global__ void callVirtualFunction(chai::managed_ptr<MyBaseClass> myBaseClass) {
int i = blockIdx.x*blockDim.x + threadIdx.x;
myBaseClass->getScalarValue();
myBaseClass->getArrayValue(i);

}

int main(int argc, char** argv) {
chai::ManagedArray<int> arrayValue(10);
chai::managed_ptr<MyBaseClass> myBaseClass

= chai::make_managed<MyDerivedClass>(0, chai::unpack(arrayValue));
callVirtualFunction<<<1, 10>>>(myBaseClass);
myBaseClass.free();
arrayValue.free();
return 0;

}

The respective host and device pointers contained in the chai::ManagedArray can be extracted and passed to the host
and device instance of MyDerivedClass using chai::unpack. Of course, if you never dereference m_arrayValue on the
device, you could simply pass a raw pointer to chai::make_managed. If the class contains a chai::ManagedArray, a

10 Chapter 3. User Guide

CHAI Documentation, Release 2023.06.0

chai::ManagedArray can simply be passed to the constructor. The same rules apply for passing a chai::managed_ptr,
calling chai::unpack on a chai::managed_ptr, or passing a raw pointer and not accessing it on the device.

More complicated rules apply for keeping the data in sync between the host and device instances of an object,
but it is possible to do so to a limited extent. It is also possible to control the lifetimes of objects passed to
chai::make_managed.

3.1. A Portable Pattern for Polymorphism 11

CHAI Documentation, Release 2023.06.0

12 Chapter 3. User Guide

CHAPTER 4

Configuring CHAI

In addition to the normal options provided by CMake, CHAI uses some additional configuration arguments to control
optional features and behavior. Each argument is a boolean option, and can be turned on or off:

-DENABLE_CUDA=Off

Here is a summary of the configuration options, their default value, and meaning:

These arguments are explained in more detail below:

• ENABLE_CUDA This option enables support for GPUs using CUDA. If CHAI is built without CUDA, HIP, or
GPU_SIMULATION_MODE support, then only the CPU execution space is available for use.

• ENABLE_HIP This option enables support for GPUs using HIP. If CHAI is built without CUDA, HIP, or
GPU_SIMULATION_MODE support, then only the CPU execution space is available for use.

• CHAI_ENABLE_GPU_SIMULATION_MODE This option simulates GPU support by enabling the GPU
execution space, backed by a HOST umpire allocator. If CHAI is built without CUDA, HIP, or
GPU_SIMULATION_MODE support, then only the CPU execution space is available for use.

• CHAI_ENABLE_UM This option enables support for Unified Memory as an optional execution space. When a
ManagedArray is allocated in the UM space, CHAI will not manually copy data. Data movement in this case
is handled by the CUDA driver and runtime.

• CHAI_ENABLE_IMPLICIT_CONVERSIONS This option will allow implicit casting between an object of
type ManagedArray<T> and the correpsonding raw pointer type T*. This option is disabled by default, and
should be used with caution.

• CHAI_DISABLE_RM This option will remove all usage of the ArrayManager class and let the
ManagedArray objects function as thin wrappers around a raw pointer. This option can be used with CPU-
only allocations, or with CUDA Unified Memory.

• ENABLE_TESTS This option controls whether or not test executables will be built.

• ENABLE_BENCHMARKS This option will build the benchmark programs used to test ManagedArray per-
formance.

13

CHAI Documentation, Release 2023.06.0

14 Chapter 4. Configuring CHAI

CHAPTER 5

Code Documentation

15

CHAI Documentation, Release 2023.06.0

16 Chapter 5. Code Documentation

CHAPTER 6

Contribution Guide

This document is intented for developers who want to add new features or bugfixes to CHAI. It assumes you have
some familiarity with git and GitHub. It will discuss what a good pull request (PR) looks like, and the tests that your
PR must pass before it can be merged into CHAI.

6.1 Forking CHAI

If you aren’t a CHAI deveolper at LLNL, then you won’t have permission to push new branches to the repository.
First, you should create a fork. This will create a copy of the CHAI repository that you own, and will ensure you can
push your changes up to GitHub and create pull requests.

6.2 Developing a New Feature

New features should be based on the develop branch. When you want to create a new feature, first ensure you have
an up-to-date copy of the develop branch:

$ git checkout develop
$ git pull origin develop

You can now create a new branch to develop your feature on:

$ git checkout -b feature/<name-of-feature>

Proceed to develop your feature on this branch, and add tests that will exercise your new code. If you are creating new
methods or classes, please add Doxygen documentation.

Once your feature is complete and your tests are passing, you can push your branch to GitHub and create a PR.

17

https://github.com/LLNL/CHAI#fork-destination-box

CHAI Documentation, Release 2023.06.0

6.3 Developing a Bug Fix

First, check if the change you want to make has been fixed in develop. If so, we suggest you either start using the
develop branch, or temporarily apply the fix to whichever version of CHAI you are using.

Assuming there is an unsolved bug, first make sure you have an up-to-date copy of the develop branch:

$ git checkout develop
$ git pull origin develop

Then create a new branch for your bugfix:

$ git checkout -b bugfix/<name-of-bug>

First, add a test that reproduces the bug you have found. Then develop your bugfix as normal, and ensure to make
test to check your changes actually fix the bug.

Once you are finished, you can push your branch to GitHub, then create a PR.

6.4 Creating a Pull Request

You can create a new PR here. GitHub has a good guide to PR basics if you want some more information. Ensure that
your PR base is the develop branch of CHAI.

Add a descriptive title explaining the bug you fixed or the feature you have added, and put a longer description of the
changes you have made in the comment box.

Once your PR has been created, it will be run through our automated tests and also be reviewed by RAJA team
members. Providing the branch passes both the tests and reviews, it will be merged into RAJA.

6.5 Tests

CHAI’s tests are all in the test directory, and your PR must pass all these tests before it is merged. If you are adding
a new feature, add new tests.

18 Chapter 6. Contribution Guide

https://github.com/LLNL/CHAI/compare
https://help.github.com/articles/about-pull-requests/

CHAPTER 7

Developer Guide

This section aims at gathering information useful to the developer.

In particular, the local build scenarios as well as CI testing will be discussed here.

7.1 Continuous Integration

7.1.1 Gitlab CI

CHAI shares its Gitlab CI workflow with other projects. The documentation is therefore ‘shared‘_.

7.2 Developer Guide

CHAI shares its Uberenv workflow with other projects. The documentation is therefore ‘shared‘_.

This page will provides some CHAI specific examples to illustrate the workflow described in the documentation.

7.2.1 Machine specific configuration

$ ls -c1 scripts/uberenv/spack_configs
blueos_3_ppc64le_ib
darwin
toss_3_x86_64_ib
blueos_3_ppc64le_ib_p9
config.yaml

CHAI has been configured for toss_3_x86_64_ib and other systems.

19

CHAI Documentation, Release 2023.06.0

7.2.2 Vetted specs

$ ls -c1 .gitlab/*jobs.yml
.gitlab/lassen-jobs.yml
.gitlab/ruby-jobs.yml

CI contains jobs for ruby.

$ git grep -h "SPEC" .gitlab/ruby-jobs.yml | grep "gcc"
SPEC: "%gcc@4.9.3"
SPEC: "%gcc@6.1.0"
SPEC: "%gcc@7.1.0"
SPEC: "%gcc@7.3.0"
SPEC: "%gcc@8.1.0"

We now have a list of the specs vetted on ruby/toss_3_x86_64_ib.

Note: In practice, one should check if the job is not allowed to fail, or even deactivated.

7.2.3 MacOS case

In CHAI, the Spack configuration for MacOS contains the default compilers depending on the OS version (compil-
ers.yaml), and a commented section to illustrate how to add CMake as an external package. You may install CMake
with homebrew, for example.

Using Uberenv to generate the host-config file

We have seen that we can safely use gcc@8.1.0 on ruby. Let us ask for the default configuration first, and then ask for
RAJA support and link to develop version of RAJA:

$ python scripts/uberenv/uberenv.py --spec="%clang@9.0.0"
$ python scripts/uberenv/uberenv.py --spec="%clang@9.0.0+raja ^raja@develop"

Each will generate a CMake cache file, e.g.:

hc-ruby-toss_3_x86_64_ib-clang@9.0.0-fjcjwd6ec3uen5rh6msdqujydsj74ubf.cmake

Using host-config files to build CHAI

$ mkdir build && cd build
$ cmake -C <path_to>/<host-config>.cmake ..
$ cmake --build -j .
$ ctest --output-on-failure -T test

It is also possible to use this configuration with the CI script outside of CI:

$ HOST_CONFIG=<path_to>/<host-config>.cmake scripts/gitlab/build_and_test.sh

20 Chapter 7. Developer Guide

CHAI Documentation, Release 2023.06.0

Testing new dependencies versions

CHAI depends on Umpire, and optionally CHAI. Testing with newer versions of both is made straightforward with
Uberenv and Spack:

• $ python scripts/uberenv/uberenv.py --spec=%clang@9.0.0 ^umpire@develop

• $ python scripts/uberenv/uberenv.py --spec=%clang@9.0.0+raja ^raja@develop

Those commands will install respectively umpire@develop and raja@develop locally, and generate host-config files
with the corresponding paths.

Again, the CI script can be used directly to install, build and test in one command:

$ SPEC="%clang@9.0.0 ^umpire@develop" scripts/gitlab/build_and_test.sh

7.2. Developer Guide 21

	Getting Started
	Installation
	Basic Usage

	Tutorial
	User Guide
	A Portable Pattern for Polymorphism

	Configuring CHAI
	Code Documentation
	Contribution Guide
	Forking CHAI
	Developing a New Feature
	Developing a Bug Fix
	Creating a Pull Request
	Tests

	Developer Guide
	Continuous Integration
	Developer Guide

